
Resource efficient peer-to-peer time-stamping service

Gísli Hjálmtýsson
Department of Computer Science

Reykjavik University
Reykjavik, Iceland
Email: gisli@ru.edu

Steinar Sigurðsson
Department of Computer Science

Reykjavik University
Reykjavik, Iceland

Email: steinars17@ru.is

Abstract—Ushered in by the introduction of Bitcoin,
blockchain systems are attracting interest from business and
academia. The dominant blockchains, Bitcoin and Ethereum,
introduce token coins, whose introduction simultaneously is
the goal of each system, requires token-coin functionality, and
is integral to the probabilistic correctness of each system. Both
systems use proof-of-work as a consensus mechanism with
unrestricted membership of writers, resulting in increasing
resource use that is becoming unsustainable.

We see the primary value of a blockchain system as being
the creation of a totally ordered sequence of events in a dis-
tributed system, that is immutable and third party verifiable.
We propose that all other functions, are not seminal to the
function of the blockchain system and should be implemented
as applications enabled from this basic functionality. On the
contrary, that including functionality beyond what is essential
to achieve this primary goal, introduces complexity beyond
value, threatens scalability and is ultimately detrimental to
the overall system performance and usefulness.

In this paper we propose a lightweight peer-to-peer per-
mitted blockchain system, having only the minimum func-
tionality to ensure immutability, and third-party verifiability.
We achieve this with minimal resources without proof-of-
work or token coins. We show how this system provides high
transaction rate while supporting a number of interesting
applications.

1. Introduction

Ushered in by the introduction of Bitcoin, blockchain
systems are attracting interest from business and academia.
However, the dominant blockchains, Bitcoin, Ethereum,
and their derivatives [1], [2], suffer from complexity and
scalability problems. Designed for the purpose of doing
peer-to-peer monetary transactions, an integral part of
the Bitcoin blockchain is the manipulation of electronic
wallets and electronic “cash” management. Ethereum elab-
orates on the token coin functionality by supporting smart
contracts further adding to the complexity. The introduc-
tion of a token coin implies a monetary issuance policy, in
each case implemented via a reward scheme to the writers
of the blockchain. The respective token coins are moreover

integral to the probabilistic correctness of each system.
None of this functionality or associated complexity seems
necessary to the underlying blockchain.

Moreover, consensus based on proof-of-work with an
unrestricted writer set has resulted in rapidly increasing
resource use that is becoming unsustainable. Originally
proposed as a distributed mechanism to combat DOS by
throttling service request rate [3], proof-of-work requires
fixed state at each writer (miner), independent of the size
of the writer set, and no explicit coordination beyond
the announcement of the next block. The trade-off cost is
substantial resource use, slow consensus and low transac-
tion rate, limiting the scalability of the system. Combined
with unlimited writer set, the increasing resource use is
unsustainable.

Unlike in typical networks, where each node adds to
the overall value of the system, doubling the number of
miners does not increase the inherent value of the overall
proof-of-work based token coin blockchain system, a clear
manifestation of the tragedy of the commons. Acknowl-
edging this the Ethereum community is proposing to
move to a proof-of-stake based consensus, which includes
a proposal to actively manage the size of the writer group
(called the validator pool) [4] and in fact active monitoring
and policing of writer behavior and compliance.

We propose that the essential value of any blockchain
system is the creation of a ledger recording the chrono-
logical order of events in a distributed system, that is
immutable and third party verifiable. Furthermore, that
all other functions of interest are in essence applications
enabled by this basic functionality and not essential to
the function of the blockchain system. On the contrary,
we contend that including functionality beyond what is
essential to provide these two seminal properties, intro-
duces complexity beyond value, threatens scalability and is
ultimately detrimental to the overall system performance
and usefulness.

We consider permissioned blockchains only, where a
certain set of writers have the exclusive right to add to
the chain. Additional members of the system can have
read access to the system. Whereas, similar to [4], we
don’t put any hard upper limit on the size of the set of
writers, the efficiency of our solution is negatively affected

as this writer set grows without bounds. It would seem
that an unrestricted writer set will ultimately suffer from
the tragedy of the commons.

Regardless of size of writer set, we observe that even if
only elementary measures are taken to manage the writers
permitted, failures of writers occur at timescales several
orders of magnitude that of the timescale of transactions.
Moreover, failures in a given round are not randomly dis-
tributed independent of previous rounds. The implication
is that in all but pathological cases the cost of discovering
the set of correctly working nodes is comparatively small.
Persistently malfunctioning nodes (or even underperform-
ing) may be removed by a slow-timescale writer group
management protocol - potentially a human administrator.
Of course the protocol must cope with failures occurring,
but can be optimized for the common case.

Similar to other blockchains, we incorporate a mech-
anism for nodes to be rewarded for contributing to the
construction of the chain, and consequently malfunction-
ing nodes to be penalized. However, rather than obfus-
cating the protocol with a new cryptocurrency, the chain
records the identity of the writer of each new block, thus
becoming a record of contribution suitable for any type
of rewarding mechanism.

In this paper we propose a new light-weight permitted
blockchain system, having only the minimum function-
ality to ensure immutability, and third-party verifiability.
The principal contribution of this paper is scalable re-
source efficient peer-to-peer time-stamping service based
on this blockchain system. We further introduce a novel
lightweight consensus protocol supporting very high trans-
action rate. Lastly, our analysis verifies the properties of the
consensus protocol, complemented with simulation results
to demonstrating its robustness and performance. Lastly,
we discuss a number of applications of interest.

The rest of this paper is organized as follows. In Section
2 we discuss related work. In Section 3, we formulate the
discussion, before describing our novel blockchain system
in Section 4. In Section 5, discusses failures and cancelled
rounds. Analysis and modeling of properties and perfor-
mance are detailed in Section 6. In Section 7 we describes
interesting applications using the blockchain system. We
then conclude in Section 8.

2. Related work

In their 1999 paper, H. Massias et al [5] describe a
"secure time-stamping service with minimal trust require-
ments", where a trusted third party issues timestamps upon
client requests. Our basic immutable third-party verifiable
event log is based on this work, albeit such that no single
writer is trusted and is replaced by a peer-to-peer network
of writers.

Whereas [1], [5] describe mechanisms to pack multiple
client requests into a single block, any such mechanisms
are orthogonal to our blockchain.

The canonical problem of distributed consensus is the
Byzantine generals problem. Since this problem was intro-

duced almost 40 years ago [6] a slew of papers have focused
on various aspects and solutions [7], [8]. The Byzantine
generals problem has been shown to be tolerant to up to
a third of the nodes being faulty or malicious.

The Byzantine generals problem is formulated to reach
a consensus one time and hence the timescale of the single
consensus is the same as the timescale of failures. The
correctness criteria of a blockchain is weaker. The chain
is a long log of events where blocks are only added to
the chain if a consensus is reached. In our case a failure
of even one writer prevents consensus of a given round.
However, this does not impact correctness as the round
is cancelled (see Section 5), and merely reduces the overall
performance in terms of transaction throughput. We show
that under practical assumptions this impact is small.

Clearly, the most influential publication on blockchain
is the "Satoshi" paper introducing Bitcoin [1]. Similar to
[1] we base our immutable event log on [5]. However,
rather than introducing PoW to select the winner of each
round, we take a protocol approach, avoiding the resource
consumption of hashing altogether. Whereas the effort and
cost of hashing may potentially be justified for Bitcoin
as the Bitcoin and its use is the proposed value of the
Bitcoin chain, the growing resource consumption seems
unsustainable and to threaten the viability of the Bitcoin
blockchain. In contrast, our resource-light protocol focuses
on the value embedded in the body of each block, the
immutability, and the total order logged by the chain.

The Bitcoin blockchain is created for one appli-
cation only, namely digital cash1. Ethereum [2] adds
smart-contract functionality, whereby each transaction
implements an arbitrary functionality, executed by the
blockchain system. This introduces substantial complexity
into Ethereum system and unpredictability in the exe-
cution of transactions. Adding to the chain is the criti-
cal section of the underlying distributed system. It seems
contrary to the learning of the operating systems and
distributed systems community to introduce substantial
complexity and unpredictability into the critical section.

From the perspective of this research, smart contracts
and their execution, while interesting, should be carried
out separately from the underlying blockchain system.

This view resonates with the approach taken by the
IBM Hyperledger [9]. IBM promotes the Hyperledger as a
distributed operating system based on blockchain, with a
very generic model for smart-contracts, supporting in prin-
ciple smart-contracts based on any programming language.
However, although the execution of smart contracts is the
responsibility of the Hyperledger system, their execution
is part of preparing a proposed transaction, before such
transaction is submitted for addition to the blockchain, and
therefore executed outside of the critical-section where the
block is added.

Our approach takes one step further, pushing the
management and execution of smart-contracts further out,

1. We acknowledge that users are using it for other applications includ-
ing smart contracts.

and completely out of the blockchain system. Whereas we
see substantial potential in the ongoing research on smart
contract, we propose that a smart-contract system be built
on top of our lightweight blockchain, as an application.

Following the success of Bitcoin, a number of cryp-
tocurrencies have been launched, the majority of which
use the proof-of-work consensus algorithm [10]. To com-
bat the resource consumption of proof-of-work, a proof-
of-stake (PoS) system have been introduced by some
blockchains [4], [11], [12].

The notion of implementing blockchains in the In-
ternet of Things (IoT) has been divisive among devel-
opers. The combination of the two can be powerful as
blockchains bring a lot of advantages to the table, especially
their decentralization and immutability.

Christidis et al [13] examined the use of blockchain
in IoT systems, finding that blockchains to provide low
transaction processing throughput and high latency, as
compared to regular DBs. We see this as a promising
potential use for our lightweight blockchain.

3. The blockchain system

We define a blockchain system as a set of nodes with
the common objective of writing and verifying a single
totally ordered chain of transaction blocks.

A subset of the nodes are writers that are allowed to
write new blocks to the chain. Writers participate in a
(distributed) consensus algorithm to determine a winner,
who gets to write the next block. The set of writers
W may change dynamically, although the changes to the
membership are assumed occur at timescales several orders
of magnitude larger than that of transactions. Nodes that
are not writers are either clients, generating transaction
requests, or observers, all of which can read the entire
chain, and verify that the chain is validly construed. Writ-
ers communicate directly over the Internet, essentially
forming a peer-to-peer network. Some messages may be
lost in this peer-to-peer network.

Nodes may be rewarded for writing to the block2 or
otherwise desire to write to the block but may misbehave
to gain an advantage, or attempt to rewrite part of the
chain. Clearly, nodes can fail and may maliciously attempt
to game the system, or simply prevent it from functioning.

In what has become referred to as public chains, includ-
ing the Bitcoin block-chain, all nodes are potential writers
and equal with respect to their privileges and participate
equally in the consensus protocol.

3.1. Generalized permitted chains

We define a permitted chain to a be a block-chain
system where the set of writers W consists of nodes that
are explicitly permitted into the set of writers. The changes
in the membership are thus governed by some additional

2. Not necessarily with direct monetary reward, but could be any type
of recognition

Figure 1. An immutable chain of events

protocol and policy. Whereas this introduces some com-
plexity in terms of managing the membership of writers,
we observe, that the time scale of such management is or-
ders of magnitude that of the processing transactions. For
those permitted chains that we know of, this management
is off-line. No assumptions are made about the number of
writers or their distribution. A permitted chain only limits
the privileges of writers, but is publicly open to any client
or observer.

4. The lightweight Blockchain system

In this section we describe the three main mechanisms
of our blockchain system. First, an elementary event log
built on a peer-to-peer time-stamping service. Second, we
define and describe the lightweight decentralized consensus
protocol. Third, the management and monitoring of the
group of writers.

4.1. A simple light-weight event log

Our event log is essentially a timestamp server, similar
to that described in [5] and adopted for Bitcoin. Each entry
in the log consists of, i) the id of the coordinator, ii) the id
of the winner, iii) the body, iv) the hash of the block, v)
the hash of the previous block, and vi) the signature of the
writer of the block (i.e. the winner). The critical element is
that the hash of the block includes the hash of the previous
entry in its hash. By induction the hash value of the new
block is a function of all previous blocks, providing the
immutability of the chain with respect to the set of writers.
The body may be composed of multiple transactions that
may be further organized e.g. into Merkle trees [14]. Such
optimizations are not the topic of this paper.

The chain is immutable as no previous block cannot
be changed without the participation of ALL members of
the writer group. Each block is signed cryptographically
by the winner who writes it. Moreover, any rewrite could
be cancelled by any writer in the group. Most importantly,
such rewriting would be clear and obviously detected by
any of the writers. Thus, our time-stamping service is
peer-to-peer without proof of work.

Milestoning and immutability. To further make the event
log immutable beyond the set of active writers, periodically
a milestone event is added to the chain, and publicized
widely. The first milestone event is the genesis block. For
publication any persistent publicly accessible forum will
do, for example a Usenet or a Facebook post. For our

Heidi Fjelde Lima

Heidi Fjelde Lima

implementation, we add a milestone event for every 100K
events, by writing the milestone event into the Bitcoin
blockchain.

Publicizing the event seals the immutability of the
chain. Even if the chain is private and only accessible to a
limited set of readers outside the writer group, for example
external auditors, the public milestones serve as external
anchors to the chain. Even if the chain exists for a limited
time, and the set of writers is retired, the last milestone
serves as the end of chain, which again cannot be altered
thereafter without it being detectable.

4.2. A lightweight high-performance consensus
protocol

For a high level view of the underlying idea of the
lightweight decentralized consensus protocol, we select a
leader based on the following. Each writer has a private
cryptographically secure one-time pad (OTP) [15]. In each
round, each writer produces the next number from its
OTP. From all the numbers we calculate an aggregate
result, i.e. a generalized "sum". The writer whose number
is closest to the aggregate is declared the leader.

The consensus protocol. To formalize the above idea into
a protocol, we define a set W set of writers, and start
by considering a single round. First we enumerate the
set of writers, from 0 to ||W || − 1. For each round a
coordinator is selected (described below), to coordinate the
round. The Coordinator does not participate in the round
as a contender to win. All arithmetic is performed modulus
some large N . The round is in four steps:

• Step 1: The Coordinator broadcasts to all other
writers in W a request for the next number.

• Step 2: Each writer, generates the next number
from its local OTP, and responds by transmitting
it to the Coordinator.

• Step 3: The Coordinator, aggregates the numbers
into a result r, and determines the winner, w, as the
identity of the writer whose number is "closest" to
r. The Coordinator then broadcasts to all writers
in W , the result r, the winner w, and all numbers
received in Step 2.

• Step 4: Each writer, verifies the round by con-
firming i) that its number is correctly received
and reported, ii) the calculation of r, and thus iii)
the winner w. The winner broadcasts its winning
block, cryptographically signed. All others, if all is
correct, reply with a confirm to the coordinator.
Otherwise, a dissenting writer broadcasts a reject.

For the initial round the writer with the lowest number
acts as the round coordinator. For subsequent rounds we
have used a simple round robin.

To aggregate the number from all the writers, we
could in principle use a simple summation modulus N .
For its simplicity when working with large numbers (e.g.

multiple words) and for its cryptographic properties, we
have chosen to use XOR as the aggregation function.

The distance metric is more tricky. We can think off,
and have experimented with a number of distance metrics,
including i) the arithmetic difference, ii) the Hamming
distance, iii) the value of the result XOR-ed to each value,
i.e. r⊕ si, where si is the number generated by writer wi.

To break ties we have used the enumerated identity
of w. Whereas, more elaborate tie breaking exist, with N
large enough, the likelihood of ties is small.

Complexity. The message complexity is ||W ||−1 messages
of fixed size for each step one and two. For step three ||W ||
messages each of size ||W ||. For step four, if no writer
dissents, ||W || − 2 messages of fixed size are sent to the
coordinator, plus ||W || − 1 messages from the winner to
transmit the new block to all. Hence for successful rounds
the number of messages becomes o(||W ||).

If the round fails, each dissenting writer broadcast a
message, in which case the complexity becomes c ∗ ||W ||,
where c is the number of cancelling nodes. To avoid this
last broadcast, the protocol can be augmented by adding
one extra round of messages, where the coordinator broad-
casts a cancel if one is received. However, in the situations
that we are targeting, we foresee that c to be too small for
this to affect the overall performance of the protocol.

Another potential issue is the the size of the message
in Step 3 is ||W ||. For the numbers we envision for the
set of writers, e.g. no more than few hundreds, it is not
an issue. For larger sets, without affecting the correctness
of the protocol, the coordinator may omit sending the
numbers received from all and simply announce the result
by broadcasting the result and the identity of the winner.

The space complexity at each writer is linear in the
size of the writer set.

To prevent any bias and reduce the dependency of
the coordinator, the protocol can be elaborated by using
two or more coordinators, which all play the role of the
coordinator and do not participate in the protocol to be
selected as potential winners. With multiple coordinators,
any mismatch between coordinators would render such
round cancelled.

Alternatively, a monitor may be nominated, either as
a separate node, or as a rolling function among the writer
set, allowing the monitoring of biases, collusion and other
misbehavior, ruling out misbehaving nodes. For a number
of reasons, including debugging, in our work we include
such a monitor as a matter of course.

Correctness. The purpose of the consensus algorithm is in
each round to select the writer w that becomes the leader,
i.e. gets to write to the chain. Each process draws from
its OTP an initial value. The goal of the protocol is that
all valid writers decide on a value v. The problem can be
formally defined in terms of three properties:

• Validity: If all correct writers propose the same
value w, then any correct process that decides,
decides w.

Heidi Fjelde Lima

Heidi Fjelde Lima

Heidi Fjelde Lima

• Agreement: No two correct writers decide differ-
ently.

• Termination: Every correct process eventually de-
cides.

The first two properties ensure correctness, whereas
the last ensures termination [16].

The value w is broadcast in Step 3, and verified by each
writer in Step 4. If the coordinator is faulty it may select
a writer ~v. In any case, if a writer does not concur with
the result, regardless of the reason, then such a writer will
trigger a cancel. Hence, if no cancel occurs, all processes in
the writer set (including the coordinator) will decide on
the same value w, thus establishing correctness. Clearly,
every correct process will eventually respond, and thus
decide.

Performance enhancements. It is clear that the latency
(from beginning to end) of the protocol is two round-trips.
However to enhance the throughput, it is worth observing
that the next round does not need to await the completion
of the previous round. Rather, the next coordinator in line,
having generated its response and completed Step 2, of
round i, immediately initiates round i+ 1, and so on. The
result is that the latency from beginning of one round to
the beginning of the next is the one way latency in the
network of writers.

To increase the transaction rate further, one can adopt
a similar approach to for example the Bitcoin blockchain,
where multiple transactions are written in each block,
effectively scaling the transaction rate by a constant. Al-
ternatively, in each round, rather than generating a single
number, each writer can generate k next numbers from
the OTP, resulting in k next winners being selected in
each round.

4.3. Managing the set of writers

We consider the membership and management of the
groups of writers.

To create a new lightweight blockchain, a creator
prepares a configuration containing a list of permitted
participants and distributes it to the participants as a
way of invitation. One easy way to do this is to simply
publish the list at a forum known and accessible to the
participants, e.g. on the web. Each participant retrieves
the list of invitees, verifies their identities and public keys,
and joins the peer-to-peer network of writers by initiating
a session with one or more of the participants. Participants
may be designated as writers, readers, clients or monitors.
The configuration may include additional properties, such
as number of coordinators per round and more. The
blockchain may be open to readers and/or clients. In that
case anyone will be admitted for read access, and/or as a
new client issuing requests.

Each writer maintains a state for every writer in the
writing set. This state includes, the writers id, and public
key, but also the protocol state of the writer, either active

or penalty. In addition writers may keep track of statistics
of other writers and more.

The basic protocol deals with occasional message losses
as message losses will either result in timeout and subse-
quent retransmission, or will simply trigger a cancel. For
smaller writer sets, we have implemented the peer-to-peer
networks as a fully connected mesh, with reliable delivery
(TCP).

Connectivity of the peer-to-peer network connecting
the group of writers is maintained separately from the
consensus protocol and blockchain management. Using a
relatively simple echo-reply style protocol, disconnected
nodes can be identified. At the protocol level, such nodes
are treated as being in the penalty box.

5. Failures and cancelled rounds

A round fails if any of the writers fails to confirm the
consensus (in step 4). This occurs if for some reason the
verification step fails, if for any reason a writer fails to
respond (time-out), or otherwise fails. Our failure model
and operating assumption make writer failures unlikely,
however when a writer fails, it will be in a failed state for
a number of rounds. To reduce the impact of failures on
the overall throughput of the system, a failed writer is put
into a penalty box (i.e. a suspend list) where it remains for
some amount of time until it is allowed back as an active
writer.

When a player faults (whatever the reason), it enters
the penalty box initially for four rounds. If the writer is
still faulty, when the penalty expires, the penalty time
is doubled, resulting in exponentially increasing penalty
time, thereby limiting the number of rounds affected by
a failure of a particular writer. For practical reasons, we
implement a maximum penalty time.

If a coordinator is faulty, it will be observed by mul-
tiple writers, each of which broadcasts a cancel message.
Thus the round is cancelled, and the protocol moves on.

There is a possibility that a coordinator may collude
with one of the writers, by collecting numbers from all
other writers before selecting a winning number for its
partner. A rewarding scheme that rewards failure free par-
ticipation above winning, essentially eliminates the incen-
tive to collude this way. Monitoring the set of writers and
penalizing misbehaving nodes e.g. similar to that discussed
in [4], is another alternative.

6. Analysis and Modeling

In this section we analyze some of the properties of the
protocol and model the throughput performance. We start
with formalizing the following definition of the sequence
of winners.

6.1. A distributed one-time-pad

Consider Zn the set of non-negative integers less than
n. Let ~σi be a sequence, σi,0, σi,1, σi,2, ... such that σi,t is

in Zn for all t ≥ 0, and where ~σi is the sequence generated
by writer i. We say that σi,t is the number generated by
node i at round t.

Let st =
∑
sj,t in Zn,∀j, and let ~s be the sequence

of st for t ≥ 0. Whether Σ denotes the arithmetic sum or
summation by XOR it follows by induction that ~s satisfies
the following properties:

• ~s is a uniquely defined.
• if for any i the sequence ~σi is cryptographically safe,

then so is the sequence st

It is interesting to contemplate the ability of node i
to predict ~s and use it to its advantage. Starting with the
case when ||W || = 2 it is clear that by making a uniform
random guess, node 0 always has at least 1/n probability of
guessing node 1’s number. Conversely, if node 1 selects the
next number randomly and uniformly in Zn, then clearly
node 0 has at best 1/n probability of guessing that number.
Hence neither node can do better.

It is elementary to show, that for uniform random
variables X,Y ∈ U(0, n) over Zn their sum Z = X + Y
mod n is a uniformly distributed random number, i.e.
Z ∈ U(0, n). By induction this applies for sum of any
number of such variables.

It follows that node i’s ability to predict the sum is
minimized if all other nodes issue number sequences that
are random and uniformly distributed over Zn. Hence any
writer wishing to maximize its likelihood of becoming a
winner will adopt the game strategy of selecting its number
at random uniformly in [0..Zn].

6.2. Modelling of failed writers

To model the failures of writers, we use a two-phased
Modulated Markov Process (MMP). In this model each
writer is considered to be in an active phase until it fails
(for whatever reason), and moves to a failed state for some
time, until it recovers and returns to being active. With
state− 0 denoting active, and state− 1 denote failed, the
transition matrix of this two-phase on/off model is

P =

(
p0,0 p0,1
p1,0 p1,1

)
,

1∑
j=0

pi,j = 1, i = 0, 1.

Given the two independent parameters p0,0 and p1,1, the
probability that the system is in state− i, is

πi =

{
p1,0

p1,0+p0,1
if i = 0

p0,1

p1,0+p0,1
if i = 1

and thus the probability that a given writer is active is µ =
π0. The expected sojourn time as in state− i is Ei{L} =
1/(1− pi,i), with variance V ari{L} = pi,i/(1− p(i, i))2.

We use this model to model the failures of individual
writers, failing independently.

6.3. Simulating transaction throughput

We evaluate the performance of the lightweight
blockchain system by studying the transaction throughput.
As a failure model we use the two-phased model above.
Ours is a permitted chain, and hence the writer set is
selected, and thus reasonably assumed to be composed
of computers receiving some minimum monitoring and
maintenance. A permitted chain is by definition managed,
however minimally that may be.

Using the on-off model, there are three controlling
parameters for our simulations, i) the size of the writer set,
ii) the expected up-time of each writer, iii) the duration of
failures. We simulate for a range of values for the size of the
writer set, but are primarily interested in small to medium
sized writer sets. For our simulations we assume all writers
have the same fail parameters for both expected up-time
and duration of failures. The duration of failures captures
whether failures are frequent but minor, or they are sched-
uled downtime or failures that require human intervention.
The latter will occur on timescales of minutes, hours or
days. Hence, there really is a fourth parameter, namely
the rate of transaction rounds per second. We effectively
embed this parameter, by setting the duration of failures
in terms of number of rounds.

In the following section we show simulation results,
for effective throughput (number of completed transaction
vs failed), as the controlling parameters are varied. We
moreover show how the occupancy of the penalty box
is impacted by the same.

6.4. Simulation Results

Table 1 shows the number of failed rounds as the size of
the writer set varies. The average up-time is set to 99.5%.
Each column shows the results for a different value for
the expected duration of failures. Faulty writers enter the
penalty box as described above. We run each simulation
for 100 million rounds. At two transaction rounds per
second, 100 million rounds correspond to just over 19
months; at 5 transaction rounds per second, 100 million
rounds correspond to just over 7,5 months or 32 weeks.
The three columns show failed state duration of 1.800,
7.200, and 28.800 rounds, corresponding to 15 minutes,
one hour and four hours until repair respectively, at the
rate of two transaction rounds per second. Results shown
are mean and standard deviation for sixteen runs each.

At a fixed up-time, the longer the duration of failures,
the fewer new failures occur. A writer failure causes a
round to be canceled, and again each time the penalty
expires while still in failed state. However, due to the
exponential backup the impact is limited to the first few
rounds. As a consequence the number of failed rounds
decreases with longer duration of failures. This is clearly
visible in the numbers. However, equally visible is the
dramatic impact of the exponential backup as the fraction
of canceled rounds is minuscule even for short failed times.
As would be expected the number of rounds cancelled

||W || 1800 7200 28800

2 5040 ± 211 1587 ± 136.1 431 ± 86
5 12534 ± 200 3758 ± 218 1107 ± 99
10 24948 ± 330 7694 ± 365 2324 ± 146
20 50167 ± 507 15361 ± 402 4547 ± 139
40 100570 ± 260 30444 ± 571 8959 ± 383
100 251062 ± 995 76541 ± 905 22736 ± 560
200 500955 ± 1892 151983 ± 1244 45158 ± 624
400 996612 ± 3925 305795 ± 1892 90470 ± 691

TABLE 1. Canceled rounds as the size of the writer set varies, for

three values for downtime duration.

Number ||W || = 40 ||W || = 100

0 80.615.517 60.532.563
1 16.527.002 25.926.021
2 2.561.942 10.075.722
3 265.803 2.779.696
4 27.984 575.466
5 1.749 96.829
6 13.484
7 216

TABLE 2. Frequency table of number of writers in the penalty box

increases with a larger writer set. Still even with a writer
set of size 400, the success rate of the system with a 4 hour
burst of failures is >99.9%. We conclude, that our simple
light-weight blockchain exhibits superior throughput per-
formance which is mostly unaffected by such failures.

Table 2 shows the frequency table for number of writ-
ers in the penalty box averaged over 16 runs of 100 million
events, for two writer sets, size 40 and 100 respectively.
The simulation is for four hour repair time for failures,
with average up-time of 99.5%. As expected the penalty
box is slightly more populated with the larger writer set.
However, in over 95% of the time, two or less writers are
being penalized. We conclude as before that the impact of
failures on the overall performance is negligible.

7. Applications of the blockchain system

We have experimented with a number of applications
enabled by the basic functionality of the light-weight
blockchain system. Three of them are briefly discussed
below.

7.1. Digital Certification Service

A Digital Certification Service in its purest form is
essentially a time-stamping service, merely evidencing that
the digital object written into the chain existed at a certain
time relative to other events on the chain. Adding a (local)
timestamp to the body, with the writers participating in
the Network Time Protocol [17], provides absolute time
of events correct within tens or at most hundreds of
milliseconds. For usability, additional information may be
collected, written to the body of block, and/or stored in
an affiliated database system.

We have implemented a certification service for aca-
demic transcripts and diplomas, as a web service. A client
submits a document (using the web services API, or man-
ually using a web front end). The service computes a hash
of the document and writes it into the blockchain. A
reference "ticket" in the form of a QR code is returned
to the client. Any third party, having a read access to the
chain, can read the chain (using the ticket to speed up its
search), compute the document hash and verify when and
where it was written in the chain.

7.2. Traceability service

We define a traceability service, as the ability to track
events related to a named object. We employ a hierarchical
naming system, allowing a named object to be broken
into parts. In addition some service specific attributes are
written to the body. The motivation is to be able to trace
objects (and/or their electronic twins) from the source,
with applications in food, news, data, and even decisions.

Apart from the naming scheme, the traceability service
builds on and uses the digital certification service. An
observer verifies the source by selecting all the events
matching the name, identifying the first such event in the
log.

7.3. e-Wallets

We define an e-wallet as a named object having (at-
tribute,value) pairs, whose current value is stored in the
value and address is stored in the attribute. The application
is built upon the traceability service where the e-wallet
traces all transactions to and from the wallet’s address
in the blockchain. A transaction is defined as the wal-
lets owner transferring funds from its e-wallet to another
address and cryptographically signing the transaction to
prevent spoofing.

This application can be implemented on the client side
or as a web service, storing the data in the cloud. When
users register a wallet, they are given a public private key
pair, where the public key is the wallets address and the
private key is used for signing the transactions. The e-
wallet is safe as long as the users private key is secure.

8. Conclusion

In this paper we propose a lightweight peer-to-peer per-
mitted blockchain system, having only the minimum func-
tionality to ensure the seminal properties of immutability,
and third-party verifiability. We have shown how this is
achieved without proof-of-work and in general at mini-
mum amount of resources. We have further introduced
a novel lightweight consensus protocol supporting very
high transaction rate, and demonstrated its correctness and
viability. Correctness is conservative - any disconsent or
failure results in a given round being cancelled.

Our analysis and simulation show, that in spite of
this, with reasonable failure assumptions, the impact of

failure on overall transaction performance is negligible,
with consensus being reached in over 99% of the rounds
for at least 97% of the players.

Lastly we have discussed key applications of this new
blockchain that we have prototyped.

References

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic
cash system,” Mar. 2009. [Online]. Available: https:
//bitcoin.org/bitcoin.pdf (visited on 11/10/2019).

[2] V. Buterin, Ethereum: A next-generation smart con-
tract and decentralized application platform, Ac-
cessed: 2020-05-26, 2014. [Online]. Available: https:
//github.com/ethereum/wiki/wiki/White-Paper
(visited on 05/07/2020).

[3] A. Back, “Hashcash - a denial of service counter-
measure,” Sep. 2002.

[4] V. Buterin and V. Griffith, “Casper the friendly
finality gadget,” ArXiv, 2017. [Online]. Available:
https://arxiv.org/pdf/1710.09437.pdf (visited on
06/15/2020).

[5] H. Massias, X. S. Avila, and J.-J. Quisquater, “De-
sign of a secure timestamping service with minimal
trust requirement,” in The 20th Symposium on Infor-
mation Theory in the Benelux, Citeseer, 1999.

[6] L. Lamport, R. Shostak, and M. Pease, “The byzan-
tine generals problem,” ACM Transactions on Pro-
gramming Language Systems, vol. 4, pp. 382–401, Jul.
1982.

[7] G. Bracha, “An asynchronous [(n - 1)/3]-resilient
consensus protocol,” in Proceedings of the Third An-
nual ACM Symposium on Principles of Distributed
Computing, Association for Computing Machinery,
1984, pp. 154–162.

[8] M. Castro and B. Liskov, “Practical byzantine fault
tolerance and proactive recovery,” ACM Transactions
on Computer Systems (TOCS), vol. 20, no. 4, pp. 398–
461, 2002.

[9] E. Androulaki, Y. Manevich, S. Muralidharan, C.
Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith,
A. Sorniotti, C. Stathakopoulou, M. Vukolić, A.
Barger, S. Cocco, J. Yellick, V. Bortnikov, C.
Cachin, K. Christidis, A. Caro, D. Enyeart, and G.
Laventman, “Hyperledger fabric: A distributed op-
erating system for permissioned blockchains,” Apr.
2018, pp. 1–15. [Online]. Available: https://arxiv.
org/pdf/1801.10228.pdf (visited on 11/10/2019).

[10] M. Sadek Ferdous, M. Jabed Morshed Chowdhury,
M. A. Hoque, and A. Colman, “Blockchain consen-
sus algorithms: A survey,” ArXiv, 2020. [Online].
Available: https ://arxiv.org/pdf/2001 .07091 .pdf
(visited on 06/01/2020).

[11] S. King and S. Nadal, “Ppcoin: Peer-to-peer crypto-
currency with proof-of-stake,” Self-published paper,
August, vol. 19, 2012.

[12] J. Kwon, “Tendermint: Consensus without mining,”
Draft v. 0.6, fall, vol. 1, no. 11, 2014.

[13] K. Christidis and M. Devetsikiotis, “Blockchains
and smart contracts for the internet of things,” IEEE
Access, vol. 4, pp. 2292–2303, 2016.

[14] R. Merkle, “Protocols for public key cryptosys-
tems,” in In Proc. 1980 Symposium on Security and
Privacy, IEEE Computer Society, Apr. 1980, pp. 122–
133.

[15] G. S. Vernam, “Cipher printing telegraph sys-
tems: For secret wire and radio telegraphic com-
munications,” Journal of the AIEE, vol. 45, no. 2,
pp. 109–115, Feb. 1926. [Online]. Available: https:
/ / ieeexplore . ieee . org / stamp / stamp . jsp ? tp =
&arnumber=6534724 (visited on 05/28/2020).

[16] B. Alpern and F. Schneider, “Defining liveness,” In-
formation Processing Letters, vol. 21, no. 4, pp. 181–
185, Oct. 1985.

[17] Network time protocol version 4:
Protocol and algorithms specification,
https://tools.ietf.org/html/rfc3912, Jun. 2010.
(visited on 05/08/2020).

